Biomarker Identfication


  Step 1: Data Input



  Case Files


Analysis Class Matrix File Group File Reference
Binary-class



DOI:10.1038/s41591-023-02396-3
Multi-class



DOI:10.1186/gb-2014-15-2-r24
Survival Analysis



DOI:10.1158/1078-0432.CCR-16-0511
DOI:10.1158/1078-0432.CCR-13-0209

  Step 2: Method and Parameter Selection



  Step 3: The Promotion of the Analysis Process.



  Step 4: Browse Analysis Results of All ML Methods

  • Under the analysis results of "Biomarker Identfication", users can click the button of "Browse All Top Biomarkers" to view the analysis results of all ML methods.

  • The browsing results included a table of all biomarkers and a upset chart to show their intersection and combination.
  • Users can select biomarkers of interest and browse their data distribution in the training set.
  • If users is performing a survival analysis, it is also possible to show the risk assessment status of the training set sample in the model. And users can browse the KM (Kaplan-Meier) analysis results of the MLmethod or biomarker of interest.


  Biomarker Evaluation


  Step 1: Data Input and Parameter Selection



  Step 2: The Results of the Evaluation of the Models / Biomarkers

  Binary-class

  Multi Class

  Survival Analysis


  Step 3: Filter According to the Evaluation Results




  Sample Prediction


  Step 1: Data Input and Parameter Selection



  Step 2: The Results of Sample Prediction




  Functional Annotation


  Step 1: Run the Analysis Program



  Step 2: The Results of Functional Annotation




  Clustering Analysis


  Step 1: Run the Analysis Program



  Step 2: The Results of Clustering Analysis



  Step 3: Functional Annotation for Specified Cluster

  • When the feature type of the uploaded data is gene, users can select the cluster of interest for functional analysis.
  • Users can select cluster by entering the coordinates or entering the id of the cluster.
  • The result form of the functional annotation is the same as previously mentioned.




  Comparison with the Original Articles


  Binary-class

Created with Highcharts 10.0.0AUC / Accuracy of PredictionStatistics of Prediction图表导出菜单Overview of AUC and PredictionCase Number in PredictionControl Number in PredictionAccuracy of Case in PredictionAccuracy of Control in PredictionAUCrandom_forestrandom_for…xgboostlightgbmadaboostcatboostdecision_treesuperpcglmnnetsvm_rfeelastic_netlassoplsridge00.20.40.60.8108001600240032004000

  Multi-class

Created with Highcharts 10.0.0Biomarker NumberR Square / AUC图表导出菜单Biomarker NumberAUCR Squarerandom_forestrandom_for…svm_rfeglmplsridgelightgbmadaboostcatboostsuperpcxgboostelastic_netlassonnetdecision_tree02040608010000.20.40.60.81

  Survival Analysis

Created with Highcharts 10.0.0-lg(P)图表导出菜单CELSR1UBE2CALDH1A1SLC9A7CDKN3SLC38A1RACGAP1PLXNA1PLK1NCAPD2RHOFCITTPX2WDHD1SLC16A3SEC14L2ATAD2PRC1FBXO32KIF20AFNDC3BMKI67SEMA7ARAI14IGF2BP3FOXM1CDH3BUB1HLFTRIP13PLOD1NCAPGANLNPBKSHCBP1KRT7SLC2A1DLGAP5NOSTRINPRR11KIF23ITGB3CCNB1CHN2SLC20A1GCNT4NR3C2CDC6ARNTL2HIST1H3ISNORD26ENO1TOP2AITGA5CD151ECT2ITGA3ERO1LFAM83DGAPDHNPC1PDK1CDK1LMO3ABCA10MMP14C7MFI2CENPKPFKPSPOCK1SLC11A1GLT25D1FKBP10CENPFCEP55SNORD12CIGF2BP2KIF12SNORD25UGT2B7ASPMCRABP2SFNDKK1SNORD109ASNORD109ATCEA3JUPSNORD113-3ITGB4SNORD116-29ADAMTSL3SNORD116-25ARHGAP11ADPEP1FLRT2NET1SNORD116-6MELKEREGSLC3A1ABCA5HIST1H2BMADMHK2CCNB2NPNTMETMXD1C1QTNF7DZIP1ITGB8TGFBIPTPRN2HIST2H2AA3HIST2H2AA3SNCGPROX1CATSPERBCHST4AREGLOXL2TNCART4KDELR3EFNB2HSN2AMY2BSNORD114-2SNORD116-23C6CALUMYOM1CH25HCADPSWFDC2SNORD114-3PIGRIFITM1PYGLLPPSNORD116-26ZNF483NT5EPLIN2SORBS2FLJ41170GPR133FRRS1CLUCSRNP3CDH13LONRF2SNORD116-8SNORD116-3SNORD116-3ADH1CRGNGPR109BMALLSNORD34C1 4orf105PXDNFRZBWEE1AQP9SNORD116-5SNORD116-5CGNL1ADH1BDCDC2FMO5PLD1FGFR2MUC6SOX6HMGCLL1DPTCFTRLOC93432UGT2B10F11FLJ16734GATMPAHSNORD116-4DHCR24C10orf81SLC4A4NMURAB26FXYD2FMO3TMEM45ASNRPNMEIS1PAK3FAM159BFREM1MCAM00.250.50.7511.251.51.7522.252.52.7533.253.53.7544.254.54.755