PROJECT ID: GSE168695


Data source GEO: GSE168695
Description Mammalian inner ear and fish lateral line sensory hair cells depend on fluid motion to transduce environmental signals and elicit a response. In mammals, actively maintained ionic homeostasis of the cochlear and vestibular fluid (endolymph) is essential for hair cell function and numerous mammalian hearing and vestibular disorders arise from disrupted endolymph ion homeostasis. Lateral line hair cells, however, are openly exposed to the aqueous environment with fluctuating ionic composition. How sensory transduction in the lateral line is maintained during environmental changes of ionic composition is not fully understood. Using lineage labeling, in vivo time lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. Furthermore, the invasive behavior is adaptive as it is triggered by drastic fluctuations in environmental stimuli. Our findings challenge the notion of an entirely placodally-derived lateral line and identify Nm ionocytes as likely regulators of mechanosensory hair cell function possibly by modulating the ionic microenvironment. The discovery of lateral line ionocytes provides an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.
Key word "foxi3 transcription factors; mitochondria-rich cells; renal tubular-acidosis; functional regulation; neurosensory organ; ion concentrations; pendred syndrome; gill epithelium; fine-structure; enhancer trap
Publication Peloggia J, Münch D, Meneses-Giles P, Romero-Carvajal A et al. Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes. Dev Cell 2021 May 3;56(9):1296-1312.e7. PMID: 33878346
Abstract Mammalian inner ear and fish lateral line sensory hair cells (HCs) detect fluid motion to transduce environmental signals. Actively maintained ionic homeostasis of the mammalian inner ear endolymph is essential for HC function. In contrast, fish lateral line HCs are exposed to the fluctuating ionic composition of the aqueous environment. Using lineage labeling, in vivo time-lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. This invasion is adaptive as it is triggered by environmental fluctuations. Our discovery of Nm ionocytes challenges the notion of an entirely placodally derived lateral line and identifies Nm ionocytes as likely regulators of HC function possibly by modulating the ionic microenvironment. Nm ionocytes provide an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.


Dataset Information


Dataset ID Species Tissue / Organ Experiment type Sample Source dataset ID
1. GSE168695 (5dpf) Danio rerio embryo baseline 5dpf, GFP+ cells isolated from 5 dpf cldnb:lyn-EGFP embryos GEO: GSM5158857

Clustering Result


Cluster Cell type Gene id (symbol) Marker class Evidence
1 NCC ionocytes ENSDARG00000071173 (slc12a10.2) marker DOI:10.1016/j.devcel.2021.03.027
1 NCC ionocytes ENSDARG00000060439 (clcn2c) marker DOI:10.1016/j.devcel.2021.03.027
1 NCC ionocytes ENSDARG00000044808 (slc4a4b) marker DOI:10.1016/j.devcel.2021.03.027
2 Skin ENSDARG00000044356 (tp63) marker DOI:10.1016/j.devcel.2021.03.027
3 Ionocyte progenitors ENSDARG00000041413 (adgrg11) marker DOI:10.1016/j.devcel.2021.03.027
3 Ionocyte progenitors ENSDARG00000054755 (alox5ap) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000055926 (foxi3a) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000014488 (ca2) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000015654 (ca15a) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000100265 (rhcgb) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000036722 (slc9a3.2) marker DOI:10.1016/j.devcel.2021.03.027
5 HR ionocytes ENSDARG00000040252 (atp1a1a.5) marker DOI:10.1016/j.devcel.2021.03.027
6 Ionocyte progenitors ENSDARG00000037921 (gng13b) marker DOI:10.1016/j.devcel.2021.03.027
8 Ionocyte progenitors ENSDARG00000043196 (rnasel2) marker DOI:10.1016/j.devcel.2021.03.027
8 Ionocyte progenitors ENSDARG00000012788 (foxa3) marker DOI:10.1016/j.devcel.2021.03.027
10 Skin ENSDARG00000039133 (lamb4) marker DOI:10.1016/j.devcel.2021.03.027
10 Skin ENSDARG00000044356 (tp63) marker DOI:10.1016/j.devcel.2021.03.027
11 NaR ionocytes ENSDARG00000014496 (trpv6) marker DOI:10.1016/j.devcel.2021.03.027
11 NaR ionocytes ENSDARG00000039264 (igfbp5a) marker DOI:10.1016/j.devcel.2021.03.027
11 NaR ionocytes ENSDARG00000043406 (slc8a1b) marker DOI:10.1016/j.devcel.2021.03.027
11 NaR ionocytes ENSDARG00000002791 (atp1a1a.1) marker DOI:10.1016/j.devcel.2021.03.027
15 KS ionocytes ENSDARG00000086248 (kcnj1a.3) marker DOI:10.1016/j.devcel.2021.03.027
15 KS ionocytes ENSDARG00000089060 (kcnj1a.5) marker DOI:10.1016/j.devcel.2021.03.027
15 KS ionocytes ENSDARG00000088484 (kcnj1a.6) marker DOI:10.1016/j.devcel.2021.03.027